
WordPress Gutenberg

Components
Guide

awhitepixelwhite



 

 

 

When WordPress version 5 shipped with the new Javascript-based block editor, Gutenberg, the code 

has been under rapid development. As a result of that there has been a lack of documentation on 

this topic.  

As a developer who works with WordPress daily, both as a job and as a hobby, I had a hard time 

embracing the new block editor without a lot of trying and failing. Along the way notes, a-ha 

moments, and code snippets were jotted down. As an attempt to compile an overview of useful and 

re-usable components available in Gutenberg's packages, this guide wrote itself.  

This guide focuses on the most common and re-usable components available in the WordPress 

Gutenberg library, which includes most types of form elements and user interaction elements. 

Examples are text inputs, checkboxes, buttons, colorpickers, dropdown menus, modals, notices, and 

useful content wrappers. Using the components that are available in WordPress anyway reduce the 

need to code and style your own components, and it also ensures coherent design. 

You'll find code examples for all components mentioned in this guide. The examples assumes some 

knowledge and experience in creating your own custom blocks – such as fetching attribute values 

and updating them. 

The overview of component's props is not a comprehensive guide in absolutely all available props.  

I have included the most important, commonly used, and most useful props. Wherever there are 

more props than listed, it's mentioned in the text. You can then click the Github link (Github icon 

next to the component's name) to go to the Gutenberg repository. In most cases you'll arrive at a 

readme file where you might find documentation on the props. 

All code in this guide is written in Javascript ES6 / ES2015+. Keep in mind that you need Babel or 

similar to transform the script into ES5. 

This guide is written and tested for WordPress 5.4.2 (summer of year 2020). 

 

About This Guide 



 

 

 

WordPress keeps Gutenberg's source code in a publicly accessible Github repository: 

https://github.com/WordPress/gutenberg 

For all components in this guide you will find a clickable Github icon next to its name. The links go 

directly to the component's source code in this reposiroty, and in most cases you'll arrive at the 

component's readme file that usually contains some documentation. However what I've found is 

that the readme files are not always kept up to date, nor do they always include all props available. 

Keep in mind the repository's branches. All 

links in this guide refers to the master 

branch. But the code in the master branch 

is not reflecting precisely the version in the 

WordPress version you are currently 

running.  

The repository have branches for major 

WordPress version releases; wp/5.1, 

wp/5.2, wp/5.3, and wp/5.4. Switch to 

these branches to see the code available in 

those WordPress versions. 

WordPress theme or plugin developers 

would find most use of the code inside the 

folder 'packages'. All the components are 

destructured from the packages inside this 

folder. For example you'll find the package folders 'components', 'block-editor', and 'element'. 

Most of the components covered in this guide is inside the components package. 

If you are interested in looking at WordPress Gutenberg's default blocks (Paragraph, Heading, Cover, 

and so on) you will find them inside the repository folder packages/block-library/src. 

Github / Source Code 

https://github.com/WordPress/gutenberg


 

 

 

 

Input Components 

Text input  (TextControl) 

Textarea  (TextareaControl) 

Rich Text  (RichText) 

Checkbox  (CheckboxControl) 

Radio Buttons  (RadioControl) 

Dropdown Select  (SelectControl) 

Toggle  (ToggleControl) 

Range  (RangeControl) 

Colorpicker  (ColorPicker) 

Date & Time Picker  (DateTimePicker, DatePicker) 

Font Size Picker  (FontSizePicker) 

Angle Picker  (AnglePickerControl) 

Resize  (ResizableBox) 

Interactive Components 

Button  (Button) 

Button Group  (ButtonGroup) 

Icon  (Icon, Dashicon) 

Spinner  (Spinner) 

Tooltip  (Tooltip) 

Advanced Tooltip  (Popover) 

Toggleable Advanced Tooltip  (Dropdown) 

Dropdown Menu  (MenuGroup, MenuItem) 

Notice  (Notice) 

Modal  (Modal) 

Clickable External Link  (ExternalLink) 

Color Preview  (ColorIndicator) 

Content wrapper: Placeholder  (Placeholder) 

Content wrapper: Disabled  (Disabled) 

Content wrapper: Generic input  (BaseControl) 

Inspector Section  (PanelBody) 

Inspector Section Content Wrapper  (PanelRow) 

Table of Contents 



 

 

 

In this chapter you'll find the most common inputs. Inputs are GUI elements that expect the user to 

input or select some kind of value.  

Most of input components resides in the package wp.components.  

 

Commonly shared props 

There are some shared traits with these components; they all expect props for the current value and 

an event for updating the value. These props are usually named value and onChange, respectively, 

unless otherwise stated.  

Keep in mind that for most inputs to work, ie. change its value, the onChange (or otherwise named) 

prop must be provided with the proper value update action. For custom blocks this usually means 

updating the value of an attribute. 

Another common shared prop is label. As the name states it will display a helpful text connected 

to the input, usually above. Most, but not all components support this so in those cases you need to 

manually create a label element if necessary. 

Finally another common shared prop is className. Most of the components support adding a 

custom class name to the input or its wrapper. This helps you to target the component for styling. 

Input Components 



// Destructure component 

const { TextControl } = wp.components; 

 

// Basic usage 

<TextControl 

 label={__('Example of TextControl', 'awhitepixel')} 

 value={props.attributes.stringAttribute} 

 onChange={(val) => props.setAttributes({stringAttribute: val})} 

/> 

 

 

 

 

TextControl is a component for a standard text input (<input type="text" ../>) which lets 

users enter and edit text in a single-line GUI. 

 

 

Props 

TextControl accepts the common shared props value, onChange, label, and className. The 

props value and onChange are necessary for the input to be editable. The component supports 

additional props (see readme documentation), but some worth mentioning are; 

type (String) (optional) Set the type attribute of the input. Examples are "number", 

"email" and "url". Defaults to "text". 

 

Code 

Text input 
TextControl 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/text-control


 

 

 

TextareaControl is a component for rendering a <textarea> element that allows users to enter 

and edit text over multiple lines. A textarea has no text formatting options (if you are looking for this, 

check the RichText component instead. But keep in mind that RichText is not supported inside 

Inspector). 

 

Props 

TextareaControl accepts the common shared props value, onChange, and label. The props 

value and onChange are necessary for the input to be editable. The component supports additional 

props (see readme documentation), but some worth mentioning are; 

rows (String) (optional) Define the number of rows the textarea should 

contain. Default is "4". 

 

Code 

Textarea 
TextareaControl 

wp.components 

// Destructure component 

const { TextareaControl } = wp.components; 

 

// Basic usage 

<TextareaControl 

 label={__('Example of TextareaControl', 'awhitepixel')} 

 value={props.attributes.stringAttribute} 

 onChange={(val) => props.setAttributes({stringAttribute: val})} 

/> 

 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/textarea-control


 

 

 

The RichText component renders an UI to edit content with support for text formatting and URLs.  

Keep in mind that the RichText component is meant to be used within the block editor. It will not 

work properly inside the Inspector. 

Inside the block's save function you need to use <RichText.Content> to correctly save and render 

the content. 

 

 

Props 

RichText accepts the common shared props value and onChange. The props value and onChange 

are necessary for the input to be editable. The component supports additional props (see readme 

documentation), but some worth mentioning are; 

tagName (String) (optional) The wrapping tag of the editable element. Inline tag 

elements (e.g. 'span') are not supported. Examples: 'h1', 'h2', 

'div', or 'p'. Default is 'div'. 

placeholder (String) (optional) If set a placeholder when the field is empty will be 

displayed. If you want the placeholder to stay even if the field is 

focused/selected, set the prop keepPlaceholderOnFocus to true. 

multiline (Boolean) (optional) By default a line break tag (<br/>) is added for 

each newline. If you want to support paragraphs when pressing Enter 

set this to true. 

Rich Text 
RichText 

wp.blockEditor 

https://github.com/WordPress/gutenberg/tree/master/packages/block-editor/src/components/rich-text


preserveWhiteSpace (Boolean) (optional) By default tabs, newline and space characters are 

collapsed into a single space. To avoid this set this prop to true as to 

keep any whitespace as is. 

allowedFormats (Array of strings) (optional) A prop that allows you to control which text 

formatting options are available. By default all registered formats are 

allowed. Default formats are named as following: Bold: 'core/bold', 

Italic: 'core/italic', URL: 'core/link', Strikethrough: 

'core/strikethrough', Inline code: 'core/code', Inline image: 

'core/image', and Text color: 'core/text-color'. 

 

Code 

// Destructure component 

const { RichText } = wp.blockEditor; 

 

// Basic usage 

<RichText 

 value={props.attributes.stringAttribute} 

 onChange={(val) => props.setAttributes({stringAttribute: val})} 

/> 

 

/* If you are using RichText for adding a title, set tagName prop to the desired title 

tag. It also makes sense to disable certain text formatting options that is not fit for a 

title. In the example below RichText is used to make a h2 title with only italic, 

strikethrough and text color available: */ 

<RichText 

 value={props.attributes.stringAttribute} 

 onChange={(val) => props.setAttributes({stringAttribute: val})} 

 tagName="h2" 

 allowedFormats={['core/italic', 'core/strikethrough', 'core/text-color']} 

/> 

 



 

 

 

A component for rendering a checkbox <input type="checkbox"> element that allows users to 

select one or more items from a set.  

If you want a more fancy UI that looks like a toggle, see "Toggle" input. 

 

Props 

CheckboxControl accepts the common shared props onChange and label. Note that the value 

prop for this component is checked, and the value needs to be a boolean. The props checked and 

onChange are necessary for the input to be editable. Also note that the label prop will appear inline 

after the checkbox, instead of a block-styled label above the input. 

The component supports additional props (see readme documentation), but some worth 

mentioning are; 

heading (String) (optional) An additional prop for displaying a label before the 

checkbox, as the prop label will be displayed inline after the checkbox. 

Keep in mind that standard WordPress styling will not make the 

heading element block styled. As default it will appear inline before the 

checkbox. Some styling fixes or manual label may be necessary. 

Code 

Checkbox 
CheckboxControl 

wp.components 

// Destructure component 

const { CheckboxControl } = wp.components; 

 

// Basic usage 

<CheckboxControl 

 label={__('Example of CheckboxControl', 'awhitepixel')} 

 checked={props.attributes.booleanAttribute} 

 onChange={(val) => props.setAttributes({booleanAttribute: val})} 

/> 

 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/checkbox-control


 

 

 

A component for rendering a set of options in the form of radio buttons. You provide a set of 

choices in which the user can choose only one. 

The props and handling of this component is pretty much identical to SelectControl. The 

difference is only in the GUI representation. 

 

 

Props 

RadioControl accepts the common shared props onChange and label. Note that the value prop 

for this component is selected. The props selected and onChange are necessary for the input to 

be editable.  

The component supports additional props (see readme documentation), but some worth 

mentioning are; 

options (Array of objects) (optional) An array of choices for radio buttons. Each 

choice should be an object with the following properties; label: the 

visible text after the radio button, and value: the internal value of the 

choice and what is passed to the onChange event. 

 

 

 

 

Radio Buttons 
RadioControl 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/radio-control


Code 

// Destructure component 

const { RadioControl } = wp.components; 

 

// Basic usage 

<RadioControl 

 label={__('Example of RadioControl', 'awhitepixel')} 

 selected={props.attributes.stringAttribute} 

 onChange={(val) => props.setAttributes({stringAttribute: val})} 

 options={[ 

  { label: __('Blue Color', 'awhitepixel'), value: 'blue' }, 

  { label: __('Red Color', 'awhitepixel'), value: 'red' }, 

  { label: __('Purple Color', 'awhitepixel'), value: 'purple' }, 

  { label: __('Yellow Color', 'awhitepixel'), value: 'yellow' }, 

 ]} 

/> 

 



 

 

 

A wrapper component for a <select> element that allows users to choose an option from a 

dropdown menu. A select is a good way to cleanly display several options for the user without 

displaying all of the available options at once.  

 

 

Props 

SelectControl accepts the common shared props value, onChange, and label. The props value 

and onChange are necessary for the input to be editable. The component supports additional props 

(see readme documentation), but some worth mentioning are; 

options (Array of objects) (optional) An array of choices for the dropdown. Each 

choice should be an object with the following properties; label: the 

visible text in the dropdown, and value: the internal value of the choice 

and what is passed to the onChange event. Optionally you can provide 

the property disabled: adds the "disabled" attribute to the option 

making the choice un-choosable. 

multiple (Boolean) (optional) If set to true the GUI changes into a multiselect 

(larger box) that allows users to hold CTRL or Shift to select multiple 

options. Keep in mind that this requires the value to be an array of 

values instead of a singular value. 

 

Dropdown Select 
SelectControl 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/select-control


Code 

// Destructure component 

const { SelectControl } = wp.components; 

 

// Basic usage 

<SelectControl 

 label={__('Example of SelectControl', 'awhitepixel')} 

 value={props.attributes.stringAttribute} 

 onChange={(val) => props.setAttributes({stringAttribute: val})} 

 options={[ 

  { label: __('Blue Color', 'awhitepixel'), value: 'blue' }, 

  { label: __('Red Color', 'awhitepixel'), value: 'red' }, 

  { label: __('Purple Color', 'awhitepixel'), value: 'purple' }, 

  { label: __('Yellow Color', 'awhitepixel'), value: 'yellow', disabled: true }, 

 ]} 

/> 

 

// Example of multiselect: 

// props.attributes.arrayAttribute = ['blue', 'purple']; 

<SelectControl 

 label={__('Example of multi-select', 'awhitepixel')} 

 value={props.attributes.arrayAttribute} 

 onChange={(val) => props.setAttributes({arrayAttribute: val})} 

 options={[ 

  { label: __('Blue Color', 'awhitepixel'), value: 'blue' }, 

  { label: __('Red Color', 'awhitepixel'), value: 'red' }, 

  { label: __('Purple Color', 'awhitepixel'), value: 'purple' }, 

  { label: __('Yellow Color', 'awhitepixel'), value: 'yellow' }, 

 ]} 

 multiple={true} 

/> 

 



 

 

 

A toggle is an user interface that allows the user to turn an option on or off.  

 

 

Props 

ToggleControl accepts the common shared props onChange and label. Note that the value prop 

for this component is checked, and that it must be a boolean. The props checked and onChange are 

necessary for the input to be editable.  

 

Code 

Toggle 
ToggleControl 

wp.components 

// Destructure component 

const { ToggleControl } = wp.components; 

 

// Basic usage 

<ToggleControl 

 label={__('Example of ToggleControl', 'awhitepixel')} 

 checked={props.attributes.booleanAttribute} 

 onChange={(val) => props.setAttributes({booleanAttribute: val})} 

/> 

 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/toggle-control


 

 

 

RangeControl is a component for rendering a slider interface allowing the user to make a selection 

between a range of incremental values. The range must be between numbers. 

Images below show two examples of RangeControl. The UI difference is controlled via props. 

 

 

 

Props 

RangeControl accepts the common shared props onChange, value, and label. The props value 

and onChange are necessary for the input to be editable.  

The component supports additional props (see readme documentation), but some worth 

mentioning are; 

min and max (Number) (optional) Props for setting the minimum (min) and 

maximum (max) numbers allowed in the range. 

step (Number) (optional) Defines the stepping interval of the slider. Default 

is 1. 

beforeIcon 

afterIcon 

icon 

(String) (optional) Provide an icon to be displayed around the slider. 

beforeIcon appears before the slider, and afterIcon appears after. 

The icon prop is displayed above, next to the container title. 

 

allowReset (Boolean) (optional) If this prop is true a button to reset the slider is 

rendered. This is by default false. Use this in conjunction with the next 

prop for defining the reset value. 

Range 
RangeControl 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/range-control


resetFallbackValue (Number) (optional) Used in accordance with the allowReset prop 

above and define the value to revert to when the reset button is clicked. 

withInputField (Boolean) (optional) Set to false to not render a number input next to 

the slider. Default is true. NB: Was introduced in Gutenberg 7.5 and 

not part of WordPress 5.4. 

 

Code 

// Destructure component 

const { RangeControl } = wp.components; 

 

// Basic usage 

<RangeControl 

 label={__('Example of RangeControl', 'awhitepixel')} 

 value={props.attributes.numberAttribute} 

 onChange={(val) => props.setAttributes({numberAttribute: val})} 

 min={1} 

 max={8} 

/> 

 

// Example of adding additional GUI elements; an icon before the slider, a reset button, 

and deactivate rendering the input field: 

<RangeControl 

 label={__('Example of RangeControl', 'awhitepixel')} 

 value={props.attributes.numberAttribute} 

 onChange={(val) => props.setAttributes({numberAttribute: val})} 

 min={1} 

 max={8} 

 beforeIcon="format-image" 

 allowReset={true} 

 resetFallbackValue={6} 

 withInputField={false} 

/> 

 



 

 

 

A component for rendering a colorpicker, allowing the user to pick a color from the color wheel, or 

entering a hex code. 

 

 

Props 

The value prop for this component is color and the update event is onChangeComplete. The props 

color and onChangeComplete are necessary for the input to be editable.  

Note that the value returned in the onChangeComplete event is an object with all properties to the 

chosen color (e.g. HSL, RGB values and more). Normally you would be interested in the hex property 

which contains the standard 6-length color hex code prefixed with a #. 

disableAlpha (Boolean) (optional) Define whether or not to render an opacity slider. 

Default false. Set to true to render the opacity slider. 

 

 

 

Colorpicker 
ColorPicker 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/color-picker


Code 

The example below saves the hex color code to a block attribute by referencing the hex property of 

the returned value in the onChangeComplete event. We can pass the hex value as value in the color 

prop - the ColorPicker component will understand what kind of value it is and display the correct 

color. 

 
// Destructure component 

const { ColorPicker } = wp.components; 

 

// Basic usage 

<ColorPicker 

 label={__('Example of ColorPicker', 'awhitepixel')} 

 color={props.attributes.stringAttribute} 

 onChangeComplete={(val) => props.setAttributes({stringAttribute: val.hex})} 

/> 

 



 

 

 

There are three components available for selecting date and time. The Datepicker component 

renders a calendar where the user can pick a date. And the DateTimePicker component renders 

the same as Datepicker but allows the user to select a time at the day as well. WordPress' publish 

functionality is using the DateTimePicker component. 

The third component, Timepicker, renders the timepicker. But I've excluded it as it's not possible to 

use without it rendering a datepicker as well. 

 

 

 

 

 

 

 

 

 

 

 

Props 

The props are the same for DateTimePicker and DatePicker, since DateTimePicker is simply 

rendering the DatePicker component in itself and passing all the props. 

Both components accept the common shared props onChange. Note that the value prop for this 

component is currentDate. The current value and returned value from the update event is a string 

Date & Time Picker 
DateTimePicker, DatePicker 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/date-time


in the standard Javascript date format; "YYYY-MM-DDTHH:mm:ss". Pass null as value to 

currentDate to avoid setting an initial selected date.  

There is no label prop so you need to manually render a label if necessary. 

is12Hour (Boolean) (optional) Boolean whether or not the time should be in 12 hour 

format or 24 hour format. If this prop is not provided, it will follow WordPress' 

date and time format settings. If this is true or WordPress' date and time 

settings are set to 12 hours, the component will render additional buttons for 

setting AM and PM. 

 

Code 

// Destructure the components, or just the one you want to use 

const { DateTimePicker, DatePicker } = wp.components; 

 

// Basic usage of DateTimePicker 

<DateTimePicker 

 currentDate={props.attributes.stringAttribute} 

 onChange={(val) => props.setAttributes({stringAttribute: val})} 

 is12Hour={false} 

/> 

 



 

 

 

FontSizePicker renders an UI for selecting a font size from a dropdown or a slider of predefined 

sizes, and optionally a number input to enter a custom size. You can define your own sizes and 

names, and the choices in the dropdown will render a preview of the font size. 

Below are images of FontSizePicker. The elements are controllable via props. 

 

 

 

 

 

 

 

 

 

Props 

FontSizePicker accepts the common shared props onChange and value. Note that there are no 

label prop available so you need to manually render a label if necessary.  

The component supports additional props (see readme documentation), but some worth 

mentioning are; 

fontSizes (Array of objects) (optional) An array of choices for font sizes. 

Each choice should be an object with the following properties; 

size: a number with the font size in px, name: the visible label (e.g. 

Font Size Picker 
FontSizePicker 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/font-size-picker


"Small"), and slug: an unique slug identifier which is used for class 

generation purposes. The value of size, a number, is what is 

passed in the onChange event and used to set initial value. Also 

note that the slugs default and custom are reserved and cannot 

be used. 

disableCustomFontSizes (Boolean) (optional) If true the user cannot set a custom font 

size. They are forced to pick one of the predefined sizes defined in 

the prop fontSizes. 

withSlider (Boolean) (optional) If set to true the component will render a 

slider below the fontsize picker. The input field is moved away 

from the top row and placed to the right of the slider. 

 

Code 

// Destructure component 

const { FontSizePicker } = wp.components; 

 

// Basic usage 

<FontSizePicker 

 value={props.attributes.numberAttribute} 

 onChange={(val) => props.setAttributes({numberAttribute: val})} 

/> 

 

// The above will render only an input for entering a size and a reset button. If you 

want a dropdown to choose sizes from you need to provide the prop fontSizes. Below is an 

example of defining custom font sizes and adding the slider element 

 

<FontSizePicker 

 value={props.attributes.numberAttribute} 

 onChange={(val) => props.setAttributes({numberAttribute: val})} 

 fontSizes={[ 

  { name: __('Small', 'awhitepixel'), slug: 'small', size: 10 }, 

  { name: __('Medium', 'awhitepixel'), slug: 'medium', size: 14 }, 

  { name: __('Large', 'awhitepixel'), slug: 'large', size: 20 }, 

 ]} 

 withSlider={true} 

/> 

 

 



 

 

 

A component for rendering an UI that allows the user to select an angle from a 360 degrees circle. 

An angle can be picked by either dragging inside the circle or by entering the angle in a number 

input. 

 

 

 

Props 

AnglePickerControl accepts the common shared props onChange, value, and label.  

 

Code 

Angle Picker 
AnglePickerControl 

wp.components 

// Destructure component 

const { AnglePickerControl } = wp.components; 

 

// Basic usage 

<AnglePickerControl 

 label={__('Pick an angle', 'awhitepixel')} 

 value={props.attributes.numberAttribute} 

 onChange={(val) => props.setAttributes({numberAttribute: val})} 

/> 

 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/angle-picker-control


 

 

 

ResizableBox is a component for providing an interface to set the size of something; most 

commonly the size of the block itself. The user is presented with handles that can be dragged to 

resize the child element. This component is for example used by WordPress' Cover and Spacer 

blocks to set the block's minimum height. 

The image below shows the handles that appear around the element to resize, with the hover effect 

over the bottom edge. 

 

 

 

Props 

ResizableBox does not use any of the commonly shared props. The value prop for this component 

is in the prop size and it expects an object with the properties height and width. The prop 

onResizeStop is the event that occurs when a resizing event has completed, and it returns with four 

arguments. Common use of this event is adding the height and width properties of the fourth 

argument onto the current height and width values. See code example below. 

The component supports additional props (see readme documentation), but some worth 

mentioning are; 

enable (Object) (optional) This prop expects an object for controlling which 

corners and sides to render handles for. For instance WordPress' 

Spacer block is setting false to all corners and edges except the 

bottom, thus only allowing the user to change the height. Possible 

properties are top, bottom, right, left, topRight, topLeft, 

Resize 
ResizableBox 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/resizable-box


bottomRight, and bottomLeft. For each property you provide either 

true or false. See example of use in the code below. 

showHandle (Boolean) (optional) Boolean whether or not to render visible handles. 

Default false. I strongly recommend setting this equal to the block's 

prop isSelected. When showHandle is false it is not possible to 

resize at all.  

minHeight 

minWidth 

(String) (optional) Set a number (as string) to define the minimum 

height (minHeight) and minimum width (minWidth). 

lockAspectRatio (Boolean) (optional) If this prop is true the aspect ratio will be 

unchanged. Changing the width or height will also scale the opposite 

side by an equal amount. 

 

Code 

Basic usage allows the user to change all sides and into any size. The basic usage example below 

assumes the block has two attributes; boxHeight and boxWidth, both of type number. 

Note how the new size is saved by adding the height and width properties from the fourth parameter 

returned from onResizeStop onto the existing values. Keep in mind that you should ensure that the 

values always are valid numbers. If by accident any value gets an invalid number; NaN, the resizable 

box will stop working and get stuck in a loop of updating NaN as value every time. The only way to 

fix it is to delete the block and start over. I strongly recommend providing a default or initial 

numbers to the attributes to avoid them starting as undefined, which will result in NaN once the 

code in onResizeStop has been run. 

Any child components in the ResizableBox component will be the element to resize. It can be the 

full block's content, an image, or a single HTML node. 

The second code example is a more advanced example of a custom block's edit component using 

ResizableBox to define the block's height. It assumes an attribute boxHeight of type number and 

default 50. In order to get the block to reflect the changed height, the child div-node inside 

ResizableBox gets a style property that sets the CSS property height to the value of the 

boxHeight attribute. In some cases you might want to consider using min-height instead. 



The code allows only one handle; the bottom edge. The user cannot change the width with this 

configuration. Using this setup we can skip providing or updating the width value.  

 
// Destructure component 

const { ResizableBox } = wp.components; 

 

// Basic usage 

<ResizableBox 

 size={{ height: props.attributes.boxHeight, width: props.attributes.boxWidth }} 

 showHandle={props.isSelected} 

 onResizeStop={(event, direction, resize_element, delta) => props.setAttributes({  

  boxHeight: parseInt(props.attributes.boxHeight + delta.height),  

  boxWidth: parseInt(props.attributes.boxWidth + delta.width)  

 })} 

> 

<div>..Element to be resized..</div> 

</ResizableBox> 

 

// Example of using ResizableBox to adjust a block's height. Code shows full block edit 

component: 

const BlockEdit = (props) => { 

 const blockStyles = { 

  height: props.attributes.boxHeight + 'px' 

 }; 

 

 return( 

  <ResizableBox 

   size={{ height: props.attributes.boxHeight }} 

   showHandle={props.isSslected} 

   onResizeStop={(event, direction, resize_element, delta) =>  

props.setAttributes({  

    boxHeight: parseInt(props.attributes.boxHeight + delta.height) 

   })} 

   enable={{ 

    top: false, 

    left: false, 

    right: false, 

    topLeft: false, 

    topRight: false, 

    bottom: true, 

    bottomLeft: false, 

    bottomRight: false 

   }} 

  > 

   <div style={blockStyles}> 

    ..Content of block.. 

   </div> 

  </ResizableBox>  

 ); 

} 

 



 

 

 

The previous chapter focused on user inputs where components are used to store and update a 

value of something. This chapter will cover components that are not for storing a value, but are for 

user interactions and information display. Examples are buttons, modals, notifications, spinners, 

and wrapper components to streamline the design. 

All of the below mentioned components resides in the package wp.components.  

 

Interactive Components 



 

 

 

Button is a component for rendering a button that allow users to perform an action. The 

components offer multiple designs controllable via props. What happens when the button is clicked 

is entirely up to you. 

The content of the button is rendered from the child nodes of the Button component. It can be a 

simple text or more complex HTML. In general there's four main (visible) designs, as shown below: 

 

Primary Secondary Link Destructive link 

 

Props 

Passing no props to the component will render a button without any design (no background and no 

border). It's therefore recommended to pass at least one prop to define its design to make the 

button look like an actual button.  

The component supports additional props (see readme documentation), but some worth 

mentioning are; 

isPrimary (Boolean) (optional) Renders a primary button style (image 1 above). 

isSecondary (Boolean) (optional) Renders a secondary button style (image 2 above). 

isLink (Boolean) (optional) Renders a button that looks like a link (image 3 

above). The button will be stripped of background, border and padding. 

isDestructive (Boolean) (optional) Use together with isLink to render a button with 

red text that indicates destructive behavior (image 4 above). Using this 

with isPrimary or isSecondary will unfortunately not make the red 

text visible. 

Button 
Button 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/button


isSmall (Boolean) (optional) Decreases the size of the button 

isBusy (Boolean) (optional) Renders the button with an animated background 

to indicate that an action is being performed. 

disabled (Boolean) (optional) Renders a disabled button that can't be clicked. 

icon (String) (optional) Renders an icon before rendering the button's child 

content. Provide for example a string for a Dashicon, such as 'admin-

home'. 

onClick (Function) (optional) Provide a function to run when the button is 

clicked. 

 

Code 

// Destructure component 

const { Button } = wp.components; 

 

// Basic usage of a primary style button 

<Button 

 isPrimary 

 onClick={ () => console.log('Clicked the button!') } 

> 

 Example of button 

</Button> 

 

// Example of a secondary style button displaying only an icon. In that case we can skip 

adding any text inside 

<Button 

 isSecondary 

 icon="admin-home" 

 onClick={ () => console.log('Clicked the button!') } 

/> 

 



 

 

 

ButtonGroup is a component for helping you render multiple related buttons nicely together. The 

buttons are displayed next to each other horizontally with no gaps inbetween. Use ButtonGroup as 

a wrapper and render Button components as child nodes.  

A common use of ButtonGroup is showing a small range of small buttons whereas only one is 

active, like a radio button group. In that case you should clearly indicate which button(s) are active 

or not. This can be solved by conditionally passing the appropriate design props to the Button 

components. 

 

 

 

Props 

This component has no props. 

 

  

Button Group 
ButtonGroup 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/button-group


Code 

In the example below the ButtonGroup contains three buttons that each updates the same block 

attribute exampleWidth. By passing button style 'isSecondary' for all buttons and conditionally add 

'isPrimary' depending on current value, the result will be a button group where only the button for 

current attribute value is styled as primary. 

// Destructure the component, along with the Button component 

const { ButtonGroup, Button } = wp.components; 

 

<ButtonGroup> 

 <Button 

  isSecondary 

  isPrimary={props.attributes.exampleWidth == '25'} 

  onClick={() => props.setAttributes({ exampleWidth: '25' })} 

 >25%</Button> 

 <Button 

  isSecondary 

  isPrimary={props.attributes.exampleWidth == '50'} 

  onClick={() => props.setAttributes({ exampleWidth: '50' })} 

 >50%</Button> 

 <Button 

  isSecondary 

  isPrimary={props.attributes.exampleWidth == '75'} 

  onClick={() => props.setAttributes({ exampleWidth: '75' })} 

 >75%</Button> 

</ButtonGroup> 

 

 



 

 

 

Rendering an icon is easy by using either the Icon or Dashicon components. As the name suggests, 

Dashicon can only be used for displaying one of WordPress' Dashicons. The Icon component can 

also be used to render a Dashicon, but also supports providing a custom SVG. Keep in mind that it 

appears as WordPress is phasing out Dashicon in favor of Icon. 

The icon (Dashicon or SVG) will render a <svg> tag without any wrappers. Most commonly you 

would use this component inside for example a Button component. 

 

 

Props 

icon (String | Function | WPComponent) (optional) Provide the icon to 

render. Dashicon supports only a string with the Dashicon's name. For 

Icon you can provide a function or component that returns an <svg>. 

See code examples below. 

size (String) (optional) Provide a number as string to define the icon's size. 

Default is 20 for Dashicon and 24 for other types of icons. 

className (String) (optional) If necessary you can provide a desired class name to 

apply to the <svg> tag. 

 

 

 

 

  

Icon 
Icon, Dashicon 

wp.components 

https://developer.wordpress.org/resource/dashicons/
https://github.com/WordPress/gutenberg/tree/master/packages/components/src/icon
https://github.com/WordPress/gutenberg/tree/master/packages/components/src/dashicon


Code 

When providing an SVG to Icon I recommend to not provide it in a function. As a function the 

component will not recognize the svg tag and apply the proper size props onto it. It can often result 

in an unecessary large container. Instead provide the SVG directly. 

 
// Destructure either Icon or Dashicon 

const { Icon, Dashicon } = wp.components; 

 

// Basic usage of Dashicon 

<Dashicon icon="smiley" /> 

 

// Basic usage of Icon 

<Icon  

 icon={ 

  <svg> 

   <circle cx="50%" cy="50%" r="30" fill="red" /> 

  </svg> 

 } 

 size="60" 

/> 

 

// Not recommended usage: icon={() => (<svg .../>)} 

 



 

 

 

The Spinner component renders an animated icon that visually informs the user that an action is 

being performed. This component is commonly rendered in cases where the code needs to wait for 

an AJAX response or some heavy operation that might take a while. 

The spinner looks like the image below, but animated. The white dot is going around in circles. 

 

Props 

This component has no props. 

Code 

Usually you would wrap some conditional around this component. A basic example is a component 

holding a boolean state for whether or not the spinner should be displayed. When some action is 

finished the state would be updated to no longer show the spinner. 

 

Spinner 
Spinner 

wp.components 

// Destructure component 

const { Spinner } = wp.components; 

 

// Basic (and pretty much only) usage 

<Spinner /> 

 

// Example of rendering a Spinner depending on state 

{this.state.isLoading &&  

 <Spinner /> 

} 

 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/spinner


 

 

 

If you have an element (e.g. an input or a Button) you can wrap it inside a Tooltip component to 

render a tooltip when the element receives focus or on mouseover.  

The Tooltip component allows only one child element. If you need a tooltip to wrap around more 

advanced content, see "Advanced Tooltip" (Popover). 

 

 

Props 

text (String) (optional) The text to display inside the tooltip. 

position (String) (optional) Define the direction the tooltip should open relative 

to its parent node. Possible values are "top", "bottom" on the y axis and 

"left", "center", and "right" on the x axis. You can combine the x and 

y values with a space. Default is "top center". 

 

Code 

Tooltip 
Tooltip 

wp.components 

// Destructure component 

const { Tooltip } = wp.components; 

 

// Basic usage, wrapped around a Button component 

<Tooltip 

 text="Click me!" 

> 

 <Button isSecondary>Button</Button> 

</Tooltip> 

 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/tooltip


 

 

 

Popover is a more advanced tooltip that works more like a floating modal. It can render content of 

any sort, not just simple text. As opposed to Tooltip the children elements to this component is 

what is rendered inside the tooltip. It anchors itself to its parent node (which can for example be a 

Button). 

Another crucial thing to be aware of is that Popover is always rendered visible, and not activated by 

an element's focus or mouseover (like Tooltip). You will need to handle the render of this 

component depending on some state or variable. In most cases you might want to consider instead 

using Dropdown (see "Toggleable Advanced Tooltip") that handles this for you. Dropdown is using 

Popover to render its content. 

Keep in mind that you most likely need to add some custom styling to the Popover's content to 

make it look good.  

 

 

 

Props 

The component supports additional props (see readme documentation), but some worth 

mentioning are; 

className (String) (optional) Provide an additional class name to apply to the 

popover. This is useful for targeting it with custom styling.  

position (String) (optional) Define the direction the tooltip should open relative 

to its parent node. Possible values are "top", "bottom" on the y axis and 

Advanced Tooltip 
Popover 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/popover


"left", "center", and "right" on the x axis. You can combine the x and 

y values with a space. Default is "top center". 

noArrow (Boolean) (optional) Set to true to hide the arrow that visually 

indicates the element the Popover is anchored to. 

 

Code 

The example below is a basic example of a Popover conditionally rendered by a state variable, 

inside a Button. Keep in mind that you can add as many child nodes inside the popover as you like. 

The Popover's size will (mostly) expand to fit its content: 

 
// Destructure component 

const { Popover } = wp.components; 

 

// Basic usage 

<Button isSecondary> 

 Button with Popover 

 {this.state.visiblePopover && ( 

  <Popover> 

   <div> 

    <p>This is a Popover!</p> 

   </div> 

  </Popover> 

 )} 

</Button> 

 



 

 

 

Dropdown is a component you can use to render a button to toggle a floating tooltip (using the 

Popover component) when clicked. Dropdown takes care of updating the state of the modal 

(opened/closed) and handles closing the modal when clicking anywhere outside. This is why the 

Dropdown component is a good alternative to manually handling a Popover component's render 

depending on some state and handling the triggers to close the Popover. 

The component has a prop where you can render the modal toggler, most commonly by rendering a 

Button component. The Dropdown's content is rendered by a prop, not its child nodes.  

As with the Popover component, you most likely need to add some custom styling to make the 

Popover's content look good. 

 

 

Props 

The component supports additional props (see readme documentation), but some worth 

mentioning are; 

renderToggle (Function) (required) The function to render the toggler, usually a 

Button. The function receives an object as parameter with the 

properties: isOpen: current open/closed state of the tooltip, onToggle: 

a function to call to toggle the open/closed state, onClose: a function 

to toggle closed state. 

renderContent (Function) (required) The function to render the Popover's content. The 

function receives the same object as parameter as explained in 

renderToggle. 

Toggleable Advanced Tooltip 
Dropdown 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/dropdown


position (String) (optional) ) Define the direction the tooltip should open relative 

to its parent node. Possible values are "top", "bottom" on the y axis and 

"left", "center", and "right" on the x axis. You can combine the x and 

y values with a space. Default is "top center". 

className (String) (optional) Provide an additional class name to apply to the 

global container (wrapping around the Button and Popover). 

contentClassName (String) (optional) Provide an additional class name to apply to the 

Popover element.  

popoverProps (Object) (optional) If you need to pass over custom props to the 

Popover component that is not exposed in Dropdown you can do it in 

this prop. The prop noArrow is an example. 

onToggle (Function) (optional) Function to be invoked when the Popover 

changes from open to closed state and vice versa. The function 

receives a boolean as parameter; if it's true the popover is about to 

open, and if it's false the popover will close. 

 

Code 

// Destructure component, and Button as well 

const { Dropdown, Button } = wp.components; 

 

// Basic usage, showing the Popover below and to the right of the toggle button 

<Dropdown 

 position="bottom right" 

 renderToggle={({ onToggle }) => ( 

  <Button isPrimary onClick={onToggle}> 

   Toggle the tooltip 

  </Button> 

 )} 

 renderContent={() => ( 

  <div> 

   This is the content of the popover. 

  </div> 

 )} 

/> 



 

 

 

If you need to render a list of elements similar to a dropdown menu but don't want to use a standard 

select; MenuGroup and MenuItem can be a good alternative. Use MenuGroup as the parent node to 

one or multiple MenuItem.  

You can use the combination as a dropdown menu, for example to a toolbar button, allowing users 

to do actions upon clicking the menu elements. Each item can optionally render an icon before the 

element text. Or you can also use MenuGroup and MenuItem to display a list of choosable elements, 

for instance a list of posts to choose from. 

The items has a prop to make them work as a checkbox (allows to choose multiple) or as a radio 

button (only one can be chosen). Keep in mind that they don't visibly render as checkboxes or radio 

buttons.  

 

 

 

 

  

 

 

Props 

The MenuGroup component has only one prop: label. This is an optional string that will display a 

label element above the list of MenuItem. 

As for MenuItem there are some more props. It supports additional props (see readme 

documentation), but some worth mentioning are; 

isSelected (Boolean) (optional) Define whether or not the menu item is selected.  

Dropdown Menu 
MenuGroup, MenuItem 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/menu-group
https://github.com/WordPress/gutenberg/tree/master/packages/components/src/menu-item


icon (String) (optional) Display an icon before the item's text. Provide a 

Dashicon's name, for example 'yes' for a checkbox. If you use this 

component to render a choice of items it can make sense to render a 

checkbox icon for the selected one(s). See example below. 

role (String) (optional) Can be set as either "menuitemcheckbox" (to allow 

multiple MenuItem inside a MenuGroup to be chosen) or 

"menuitemradio" (only one can be selected). Default is 

"menuitemcheckbox". 

onClick (Function) (optional) Function to run when clicking on the menu item.  

 

Code 

The first example below is using MenuGroup and MenuItem to generate a dropdown menu to a 

button inside a Popover (advanced tooltip).  

 

 

 

 

 

 

 

 

 

 

 

 

// Destructure components 

const { MenuGroup, MenuItem } = wp.components; 

 

// First example: As a dropdown menu inside a Popover 

<Button isSecondary icon="admin-generic"> 

 Shows a dropdown menu 

 <Popover position="bottom center"> 

  <MenuGroup> 

   <MenuItem  

    icon='admin-links' 

    onClick={() => console.log('Clicked menu choice 1')} 

   >Dropdown Choice 1</MenuItem> 

   <MenuItem  

    icon='admin-tools' 

    onClick={() => console.log('Clicked menu choice 2')} 

   >Dropdown Choice 2</MenuItem> 

  </MenuGroup> 

 </Popover> 

</Button> 

 

https://developer.wordpress.org/resource/dashicons/#yes


The example below is a basic example of a using MenuGroup and MenuItem to allow the user to 

select one element from a list of elements.  

It assumes a variable that contains an array of choices and some variable to determine which is the 

chosen one. It renders a checkbox icon on the selected item and a "x" icon on the others to visually 

show the user which one is selected: 

 

 

// Second example: As a list of choosable elements 

<MenuGroup 

 label="Please choose one" 

> 

 {choices.map((item) => ( 

  <MenuItem  

   isSelected={item == activeChoice} 

   icon={item == activeChoice ? 'yes' : 'no-alt'} 

   role="menuitemradio" 

   onClick={() => console.log('Handle switching selected one')} 

  >{item}</MenuItem> 

 ))} 

</MenuGroup> 

 



 

 

 

Notice is a component to render clearly visible messages to the user. They should be used for 

messages that don't necessarily require an action from the user. Common uses are displaying a 

warning that something went wrong, or showing a success message after an action has been 

successfully completed. You control the notice's color with props. 

The notices are rendered at their position in the code, and you need to write code to render the 

component depending on a state or after some action.  

The children node(s) to the component is what is displayed inside the notice. Just simple text is 

recommended as children to Notice. If you need to display more complex content, see Modal. 

Notices are dismissable as default, but you can make them indismissable via props if you'd rather 

control their render by a timer or some other fashion. 

 

 

Props 

The component supports additional props (see readme documentation), but some worth 

mentioning are; 

Notice 
Notice 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/notice


status (String) (optional) Defines the type (design). Can be "warning" (yellow), 

"success" (green), "error" (red), or "info" (blue). Default is "info". 

isDismissible (Boolean) (optional) Decides whether or not the notice can be closed 

by the user. Default is true. If set to true the "X" close button will not 

appear and the notice will stay until you remove it by some action or 

state change. 

 

Code 

// Destructure component 

const { Notice } = wp.components; 

 

// Basic usage 

<Notice 

> 

 This is a notice! 

</Notice> 

 

// A simple example of a conditional notice that vary the type of message and text 

depending on some boolean state wasSuccessful 

<Notice 

 status={wasSuccessful ? 'success' : 'error'} 

> 

 {wasSuccessful ? 'Settings saved!' : 'Uh oh, something wrong happened...'} 

</Notice> 

 

 



 

 

 

Modal is a component that renders a floating dialog window. The component renders its children 

nodes as the content of the modal. The modal fades out the background and will always appear 

centered in the screen, and it resizes depending on its content. So it doesn't really matter where you 

add the render code of the modal, but it needs to be conditionally rendered depending on a certain 

state.  

Keep in mind that as default the modal renders with a close button, but nothing happens upon 

clicking it unless you add props to handle the close event. 

 

Props 

The component supports additional props (see readme documentation), but some worth 

mentioning are; 

title (String) (required) Sets the modal's title.  

onRequestClose (Function) (required) Function to call to indicate that the modal 

should be closed. Usually it would set some state to false 

which prevents the render of the Modal component. 

isDismissible (Boolean) (optional) Set to false to not allow the user to close 

the modal. The modal is rendered without the "x" close button. 

You would need to render some kind of button or action inside 

the modal to allow to close it. Use together with 

Modal 
Modal 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/modal


shouldCloseOnEsc and shouldCloseOnClickOutside to 

make the modal truly impossible to close otherwise. 

shouldCloseOnEsc (Boolean) (optional) Set to false to prevent closing the modal 

upon pressing the Escape key. Default is true. 

shouldCloseOnClickOutside (Boolean) (optional) Set to false to prevent closing the modal 

upon clicking anywhere outside the modal. Default is true. 

className (String) (optional) Provide a custom class name that will be 

applied to the modal's content div. 

overlayClassName (String) (optional) Provide a custom class name to the modal's 

overlay div (the fade out background). 

Code 

// Destructure component 

const { Modal } = wp.components; 

 

// Basic example of a Button that opens a modal. It assumes a state isModalOpen which 

when true will render the modal 

<Button  

 isSecondary 

 onClick={() => setModalOpen(true)} 

>Open modal</Button> 

{isModalOpen && ( 

 <Modal 

  title="This is a modal" 

  onRequestClose={() => setModalOpen(false)} 

 > 

  <p>This is the content of the modal!</p> 

 </Modal> 

)} 

 

// Example of a modal that has disabled all possible close actions unless the user clicks 

the manual Button component inside 

<Modal 

 title="This is a modal" 

 isDismissible={false} 

 shouldCloseOnEsc={false} 

 shouldCloseOnClickOutside={false} 

> 

 <p>This is the content of the modal!</p> 

 <Button isPrimary onClick={() => setModalOpen(false)}>Close modal</Button> 

</Modal> 

 



 

 

 

ExternalLink is a small, simple component that renders a clickable link. It appears with underlined 

text and the "external link" icon after. The children node is the link text. 

 

 

 

Props 

There's only two props to this component; 

href (String) (required) Set the URL the link should go to. 

className (String) (optional) Provide a custom class name to the link. 

 

Code 

Clickable External Link 
ExternalLink 

wp.components 

// Destructure component 

const { ExternalLink } = wp.components; 

 

// Basic usage 

<ExternalLink 

 href="https://awhitepixel.com" 

> 

https://awhitepixel.com 

</ExternalLink> 

 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/external-link


 

 

 

ColorIndicator is a small, simple component that renders a small box previewing one color. You 

cannot interact with the preview box. It's useful in cases where you want to visually show the user 

the active or chosen color.  

This component is used by the Inspector "Color settings" tab found in most WordPress blocks, right 

above the palette colors when a custom color is chosen. 

 

 

Props 

There's only one prop to this component; 

colorValue (String) (required) Set the hex color (including the "#") to display in the 

preview box. 

 

Code 

Color Preview 
ColorIndicator 

wp.components 

// Destructure component 

const { ColorIndicator } = wp.components; 

 

// Basic usage 

<ColorIndicator 

 colorValue="#9a6cd8" 

/> 

 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/color-indicator


 

 

 

The Placeholder component is used by many blocks inside the block's editor area to signify an 

"editing" mode. The Placeholder generates a flex-styled div with light gray transparent 

background, ready to wrap other components and content in. You can put any type of content inside 

as this is simply a wrapping div that comes with some styling. 

You can see Placeholder being used in for example Cover block right after adding it when it 

displays a choice of choosing a color or setting an image.  

 

 

Props 

label (String) (optional) Set a label (displayed above the Placeholder's 

content) in bold. 

icon (String | WPElement) (optional) Provide a Dashicon or an SVG icon to 

display before the label above the Placeholder's content. 

instructions (String) (optional) Renders instructional text below the label. 

isColumnLayout (Boolean) (optional) Decides the flex-direction of the Placeholder's 

wrapper. Default is false, which means flex-direction is 'column' (child 

nodes are placed next to each other horizontally). 

className (String) (optional) Add a custom class to the Placeholder's div. 

Content wrapper: Placeholder 
Placeholder 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/placeholder


Code 

// Destructure component 

const { Placeholder } = wp.components; 

 

// Basic usage 

<Placeholder 

 icon="admin-home" 

 label="Placeholder component example" 

> 

 <p>This is the content of placeholder.</p> 

</Placeholder> 

 



 

 

 

Disabled is a simple wrapper component that disables any interactions with the components 

inside it. Any input components are uneditable, links are unclickable, and any buttons automatically 

get disabled. This component is useful when you want to show a preview of a complex block with 

for example links, but you want to avoid the user accidently clicking the links while in the editor. 

 

 

 

Props 

className (String) (optional) Add a custom class to the Disabled's div. 

 

Code 

Content wrapper: Disabled 
Disabled 

wp.components 

// Destructure component 

const { Disabled } = wp.components; 

 

// Basic usage 

<Disabled> 

 <p>Any content in a Disabled component can't be interacted with.</p> 

 <Button isSecondary>Can't click me</Button> 

</Disabled> 

 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/disabled


 

 

 

The BaseControl component is helpful for generating labels and help text for your custom form 

input. Useful for creating content that follows WordPress standardized design and avoiding adding 

custom editor styling. Wrap this component around any user input component that doesn't support 

label or where the label gets misplaced. You can also wrap this around custom HTML form 

elements in cases you don't want to use WordPress' user input components.  

 

 

Props 

id (String) (required) The id to the input element rendered inside the 

component so that the label and help text are correctly related to the 

input. 

label (String) (optional) The text to be displayed in the label 

help (String) (optional) Displays a help text below the content in italic. 

className (String) (optional) Add a custom class to the wrapping div. 

 

Code 

Content wrapper: Generic input 
BaseControl 

wp.components 

// Destructure component 

const { BaseControl } = wp.components; 

 

// Example of properly adding a label above a CheckboxControl by using BaseControl 

<BaseControl 

 label="Better label placement above with BaseControl" 

> 

 <CheckboxControl label="A checkbox" /> 

</BaseControl> 

 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/base-control


 

 

 

PanelBody is a component that generates a single section of content inside Inspector that can be 

expanded or collapsed.  

This component is meant to be used as child nodes inside the InspectorControls component. It 

is however possible to use it inside block editor content as well (styling and the collapse/expand 

functionality will work). 

 

Props 

The component supports additional props (see readme documentation), but some worth 

mentioning are; 

title (String) (optional) Set the section's title. Not required but important 

nonetheless as this is the only content visible when a section is 

collapsed. 

initialOpen (Boolean) (optional) Set to true to auto-expand the section when 

rendered. 

Inspector Section 
PanelBody 

wp.components 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/panel


opened (Boolean) (optional) Set to true to keep the section permanently open. 

Clicking on collapse will do nothing. It will also always be auto 

expanded, so using initialOpen is not necessary. 

icon (String) (optional) Provide a Dashicon name and an icon will appear 

after the section's title. 

className (String) (optional) Provide a custom class name to the wrapper div. 

 

Code 

// Destructure component 

const { PanelBody } = wp.components; 

 

// Basic usage 

<PanelBody 

 title="Example of PanelBody" 

 initialOpen={true} 

> 

 Content inside section. 

</PanelBody> 

 

// Common usage of adding sections to Inspector 

const { InspectorControls } = wp.blockEditor; 

const { PanelBody } = wp.components; 

... 

<InspectorControls> 

 <PanelBody 

  title="Example of PanelBody" 

  initialOpen={true} 

 > 

  Content inside section. 

 </PanelBody> 

 <PanelBody 

  title="Another PanelBody" 

 > 

  Content inside another. 

 </PanelBody> 

</InspectorControls> 



 

 

 

WordPress offers a content wrapper component PanelRow to be used inside a PanelBody 

component. PanelRow sets its children content as flex with flex-direction row (content is placed 

next to each other horizontally). 

Common usage is adding multiple PanelRow inside a PanelBody, each with a single input 

component inside. 

 

Props 

There's only one prop to PanelRow; 

className (String) (optional) Provide a custom class name to the wrapping div. 

 

Code  

Inspector Section Content Wrapper 
PanelRow 

wp.components 

// Destructure component 

const { PanelRow } = wp.components; 

 

// Example of using PanelRow inside InspectorControls (wp.blockEditor) and PanelBody 

(wp.components) 

<InspectorControls> 

 <PanelBody 

  title="This is a section" 

  initialOpen={true} 

 > 

  <PanelRow> 

   <TextControl label="Example input" /> 

  </PanelRow> 

  <PanelRow> 

   <CheckboxControl label="Example input" /> 

  </PanelRow> 

 </PanelBody> 

</InspectorControls> 

https://github.com/WordPress/gutenberg/tree/master/packages/components/src/panel


 

 

 

I hope this small, free e-book guide has been of some use to you! 

This guide was written by a white pixel, a WordPress developer living in Norway. I have a website 

dedicated to self-written and detailed WordPress tutorials at https://awhitepixel.com/. You are 

most welcome to take a look. There you'll find tutorial and guides for theme development, 

Gutenberg, general WordPress, and plugin customization for e.g. WooCommerce and Gravity 

Forms. 

 

- awhitepixel 

Final words 

https://awhitepixel.com/

	Cover
	About This Guide
	Github / Source Code
	Table of Contents
	Input Components
	Text input (TextControl)
	Textarea (TextareaControl)
	Rich Text (RichText)
	Checkbox (CheckboxControl)
	Radio Buttons (RadioControl)
	Dropdown Select (SelectControl)
	Toggle (ToggleControl)
	Range (RangeControl)
	Colorpicker (ColorPicker)
	Date & Time Picker (DateTimePicker, DatePicker)
	Font Size Picker (FontSizePicker)
	Angle Picker (AnglePickerControl)
	Resize (ResizableBox)

	Interactive Components
	Button (Button)
	Button Group (ButtonGroup)
	Icon (Icon, Dashicon)
	Spinner (Spinner)
	Tooltip (Tooltip)
	Advanced Tooltip (Popover)
	Toggleable Advanced Tooltip (Dropdown)
	Dropdown Menu (MenuGroup, MenuItem)
	Notice (Notice)
	Modal (Modal)
	Clickable External Link (ExternalLink)
	Color Preview (ColorIndicator)
	Content wrapper: Placeholder (Placeholder)
	Content wrapper: Disabled (Disabled)
	Content wrapper: Generic input (BaseControl)
	Inspector Section (PanelBody)
	Inspector Section Content wrapper (PanelRow)

	Final words



